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This paper presents a detailed sensitivity analysis of the active manip- Received 21 January 2022
ulation scheme for electromagnetic (EM) fields in free space. The Accepted 23 August 2022
active EM fields control strategy is designed to construct surface cur- KEYWORDS

rent sources (electric and/or magnetic) that can manipulate the EM
fields in prescribed exterior regions. The active EM field control is
formulated as an inverse source problem. We follow the numerical
strategies in our previous works, which employ the Debye potential
representation and integral equation representation in the forward
modelling. We consider two regularization approaches to the inverse
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problem to approximate a current source, namely the truncated sin-
gular value decomposition (TSVD) and the Tikhonov regularization
with the Morozov discrepancy principle. Moreover, we discuss the
sensitivity of the active scheme (concerning power budget, con-
trol accuracy, and quality factor) as a function of the frequency, the
distance between the control region and the source, the mutual
distance between the control regions, and the size of the control
region. The numerical simulations demonstrate some challenges and
limitations of the active EM field control scheme.

45A05; 65E05; 78A46;
78M15; 45Q05

1. Introduction

Active manipulation of electromagnetic (EM) fields is emerging in modern electromag-
netics. In recent years, the study of active field control techniques has attracted huge
attention and research efforts. The current literature has significantly addressed the idea
of the active control of the EM fields in broad applications. These applications include, but
are not limited to, scattering cancellation or reduction [1-8], metamaterial or metasur-
face design [9-14], field synthesis [15-22]. Active field control techniques are becoming
increasingly ubiquitous to enhance EM wave-based systems.

Regarding the scattering cancellation or reduction (also known as cloaking) applica-
tions, Chen et al. [1] demonstrated active scattering-cancellation cloaks in both 1-D and
3-D scenarios. The authors explored the potential of active scattering-cancellation cloaks to
realize broadband invisibility based on anomalous permittivity dispersion. Theoretically,
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the proposed active cloak scheme can overcome the Bode-Fano bandwidth limit and oper-
ate in a much broader bandwidth than passive scattering-cancellation cloaks. Onofrei [8]
investigated the active cloaking in the quasi-static regime, where the field is modelled by the
Laplace operator. In this work, the author proposed a systematic integral equation method
to generate suitable quasi-static fields for cloaking, illusions and energy focussing (with
given accuracy) in multiple regions of interest. In [2], the authors proposed an active cloak-
ing mechanism that makes use of the equivalence principle. In this approach, the cylinder
is replaced by an array of electric or magnetic current sources placed around the cylinder’s
periphery. Then the equivalent currents radiate in free space. Another circular array of cur-
rent sources is placed concentrically to the original cylindrical object. Excitations of these
external sources are taken such that the array and the object cancel its overall scattering for
an incoming wave. Similarly, Selvanayagam et al. [6] investigated the active EM cloak using
the equivalence principle. Additional electric and magnetic currents are introduced to can-
cel out the scattered fields from the object. Electric and magnetic dipoles can respectively
replace the electric and magnetic currents. It has been proven that this approach can real-
ize both exterior and interior cloaking. Moreover, scattering reduction is widespread in the
radar system. The authors in [7] proposed a general real-time radar cross-section (RCS)
reduction scheme to reduce the transient scattered signal from an object. They used a
sensor on the object to measure the incident signal and applied a microstrip antenna to pro-
duce the cancelling signal. The authors assume that the direction of an incident signal at the
receiver is known. The radiation from the defending antenna can be adjusted in real-time
to cancel the scattering from the object. Thus the total field at the distant receiver is negli-
gible so that the object becomes invisible to a radar working in a given known frequency
band. The active field control techniques are also prevalent in metamaterial or metasurface
design. In [9], Brown et al. explored the possibility of metasurface design by making use
of the electromagnetic inverse source framework. The electric and magnetic surface sus-
ceptibility profiles are computed such that the transmitted field exhibits the desired field
specifications. The results show that the metasurface can focus the beam from plane wave,
change the direction and radiation pattern, etc. Huang et al. [13] reported a reconfigurable
metasurface for multifunctional control of EM waves. The proposed metasurface can gen-
erate beam-splitting performance to reduce backward scattering waves. Research into new
active field manipulation methods can play an important role in field synthesis applica-
tions. Classically, the problem of field synthesis seeks to construct the necessary currents
on a source such that the source can produce a given field pattern [23]. Lopéz et al. [20]
proposed a source reconstruction method (SRM) to establish the equivalent current dis-
tribution that radiates the same field as the actual current induced in the antenna under
test (AUT). The target application is antenna diagnostics. The knowledge of the equivalent
currents allows the determination of the antenna radiating elements and the prediction
of the AUT-radiated fields outside the equivalent currents domain. Ayestaran et al. [15]
introduced an array synthesis technique that can focus the near-field (NF) on one or more
spots and simultaneously satisty the far-field (FF) specifications. This array synthesis tech-
nique can be applied to wireless power transfer. Wireless links between the antenna array
and devices are established more efficiently since power radiated at undesired positions or
directions can be suppressed.

The majority of the efforts in the literature mentioned above have been focussed on
developing new approaches for active EM field control. One of the standard control
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strategies is based on the equivalence principle. Another category makes use of the trans-
formation acoustics or transformation optics techniques. These works give insight into
the performance of the proposed approaches under certain situations, such as narrow
frequency bands, limited control geometry, and fixed size of the sources. However, the
performances of the control strategies are unrevealed when the problem parameters are
changed. In addition, the evaluation of the control performance in previous literature is
limited, i.e. only based on the control accuracy. Therefore, a detailed sensitivity study for
the problem of controlling three-dimensional EM fields in prescribed exterior regions in
free space is presented. To our best knowledge, this is the first work to investigate the sen-
sitivity of the active scheme concerning the problem parameters. Following the similar
procedure in our previous publications [24-29], the active manipulation of the EM fields is
formulated as an inverse source-type problem, which addresses the source reconstruction
from the knowledge of the field outside the source region [30-32]. We discuss the sensi-
tivity of the active scheme (concerning power budget, control accuracy, and quality factor)
as a function of the frequency, the distance between the control region and the source,
the mutual distance between the control regions, and the size of the control region. In our
previous work [33], we demonstrated a feasibility study of actively manipulating EM fields
in free space. The paper mainly used integral equation method in the forward modelling
and the truncated singular value decomposition (TSVD) method to solve matrix inver-
sion. Besides, the paper is limited to the one-region control. In this work, we introduce
two approaches for forward modelling and two approaches for inversion, respectively. We
also extend our framework into multiple-region control, especially in contrast control. The
contrast EM fields will pose control challenges as the control regions cannot be placed very
close to each other.

The rest of this paper is organized as follows. In Section 2, we formally describe the
problem and provide relevant theoretical results obtained in [29]. We apply two meth-
ods in the forward modelling, including the Debye potential approach and the integral
equation method. Two approaches are used to solve the inverse problem, including the
truncated singular value decomposition (TSVD) and the Tikhonov regularization with the
Morozov discrepancy principle. Section 3 shows the numerical results of the benchmark
examples. Section 4 presents the EM field control sensitivity analysis in free space. Finally,
we conclude the paper with some remarks in Section 5.

2, Theory
2.1. Problem formulation

This section presents a general description of the active manipulation scheme for EM fields.
The unified functional and numerical framework have already been discussed in [26-29].
Though some of those works addressed the problem of controlling the Helmholtz fields, the
approach could be extended to solve the EM problems governed by Maxwell’s equations.
We shall briefly recall several essential theoretical results and describe some geometric
configurations of interest.

This paper explores the active EM fields manipulation scheme in free space. The prob-
lem geometry is sketched in Figure 1. Here we only consider a single source Ds, two
control regions D; and D, for illustrative purposes. Note that the theoretical analysis in
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Figure 1. Sketch of the problem geometry showing the control regions D¢, D, and the source region Ds
in free space.

[26,28,29,34] indicates that an arbitrary number of source regions and exterior control
regions can be considered in the active control scheme. The control regions D; and D, are
mutually disjoint smooth domains, i.e. D; N D, = ). We also make the assumption that the
control regions are well-separated from the source region, i.e. (D; U D;) N Dy = . Con-
sidering the EM wave in a homogeneous isotropic source free medium in R, the wave
propagation is governed by Maxwell’s equations,

V xE=iouH; V x H= —iweE. (1)

where ¢ and p is the electric permittivity and magnetic permeability of the homogeneous
and isotropic medium, yielding &9 and j1¢ in free space. The time-harmonic factor e~* is
assumed but suppressed in the following demonstration.

The inverse source problem addresses the source reconstruction from the knowledge
of the field outside the source region. It is often desirable to find the necessary sources
that produce the given EM fields in the prescribed exterior regions. Mathematically, the
problem is to find the boundary input on the source, either surface electric current J €

C*>(dDs) or magnetic current M € C*°(dD;) such that the solutions (E, H) of

V x E=iwuH, VxH= —iweH inR3\ D;,
Exn=M, (ornxH=]J) on 0D, (2)
(E, H) satisfy the Silver-Muller radiation condition at infinity,
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satisfy the control constraints

E—Ejlcp) <8 forj=1,2,
{H illcy) = or j 3)

IH —Hjllcpy =8 forj=1,2,

where § is the desired control accuracy threshold. In (2), n denotes the unit exterior normal
vector to D. The Silver-Muller radiation condition in (2) at infinity is defined as

E(x) x X+ +Hx) = O(1/[x[%), @
H(x) x X — YE(x) = O(1/|x]),
as |x| — oo uniformly with respect to points X in the unit sphere S. Y = i is the admit-

tance in non-conductive media. The radiation conditions can be simply rewritten for all
the equivalent forms of the Maxwell system and giving a smooth enough boundary data,
they guarantee the uniqueness of solutions for Maxwell exterior problems [35].

2.2. Debye potential representation

We present two approaches for the numerical computation of EM fields from the surface
currents in the following subsections. The first one is the Debye potential representation
that expresses the vector EM fields in terms of two scalar Debye potentials [36-38]. This
approach gives rise to a pair of scalar inverse source problems involving the Helmholtz
equation as discussed in [26-29]. Firstly, we rewrite Maxwell’s equations in (1) as

V x E=ikH, V x H= —ikE, (5)

by introducing the transformation pair E = /€ E,H = /i H. The k in (5) is the
wavenumber and k = w./we. Then, we define two vector fields A and B, where A =
v —iew E,B = /iop H, equivalently satisfy

V xA=kB, V xB=FKA. (6)

Equation (6) is called the Wilcox form of the Maxwell’s equations [39]. It has been proved
in [39] that there exists unique uj, v; (with zero average over the unit ball) solutions of
Helmholtz equation in D; for each j = 1,2 given by the following weakly singular integral
operators,

uj(rr) = —é A [log(sin %)] r- Aj(rf’) ds,

. (7)
vi(1t) = _é/Bl [log(sin %)] r-Bj(rr')ds,

where By denotes the ball centred at the origin and the radius is x, i.e. B; in (7) is the unit
ball. Aj = /—icw E;, B; = /ion Hj, r denotes the unit vector along direction r, r = |r|,
y = |r — 1’| denotes the geodesic distance between t and t'. u;(r) and v;(r) satisfy

Aj(r) =V x (V x ujr) + kV x vjr, Bj(r) =V x (V xvjr) +kV x yjrin D;, (8)

for each j = 1, 2. The scalar functions u; and v; are the Debye potentials. Then the problem
yields the source reconstruction from the knowledge of the Debye potentials in the exterior
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regions. Problem (2) can be written as

Viu+ku=0, V2v+k*»=0 inR3\D,,
u, v satisfy Sommerfeld radiation condition at infinity, 9)

lu —ujllczpy =8> v =vjlley =9

We can adapt the results in [26-29], where the smooth control results of the Helmholtz
equation are discussed. Following the similar procedure in our previous works, we intro-
duce the sub-domains D, and W; with D, € D, D; e W; for j = 1,2. The symbol &
denotes compact inclusion. We make use of the fictitious source’ D, and control region
W; with smooth boundary to ease the computation. Then we define the integral operator
K : L*(dDy) — L*(dW;) as

Kw(xj) = /8D’ w(y) @ (xj,y) dSy, (10)

1 eiklx=yl

where for each j = 1,2, xj € 9Wj and y € dD;. (x,y) = 5~ =1
solution for the Helmholtz equation. K is the forward propagator or mapping function,
which accounts for the response of a point source locating at y to the observation point x.
w(y) € L*(3D]) is the unknown density function defined on the fictitious source. w could
be determined by discretizing the control regions into a discrete mesh of collocation points
and w is then expressed as a linear combination (with unknown coeflicients) of truncated
series,

is the fundamental

L 1
wa(y) =Y D ap¥] (),

w(@) =Y BuY §),
=0 p=—1

where w, and w, are the density function corresponding to the Debye potentials u and v,
respectively. Yf is the orthonormal family of spherical harmonics discussed in [40]. oty and
Bp1 are unknown discrete coefficients. Then using the addition theorem and the orthogo-
nality of spherical harmonics, u and v can be approximated by the following truncated
series of spherical Hankel functions Hl(l) of the first kind and spherical Bessel functions Jj
of order |,

L I
u(r,0,0) ~ ug(r,0,¢) = ikrg Y Y ap Jilkro) Hy" (kr) YF (0, ), (12)
1=0 p=—1

L I
v(r,0,0) ~ vg(r,0,¢) = ikrg Y > Py Jitkro) Hi" (kr) Y7 (0, ¢), (13)

1=0 p=—1

where ug and vg denote the generated potentials from the given density w, and w,, respec-
tively. In these expressions, ry is the radius of the fictitious spherical source. The unknown
scalars o) and By can be independently computed using the method discussed in [25].
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More details will be conveyed in Subsection 2.4. Hence, we can define an overall propagator
operator as

Dw(y) = [Kw(x1), Kw(x2)]. (14)

As long as the unknown coefficients ap; and B are determined, the Debye potentials u,
and v, can be obtained by (12) and (13). Then the generated vector fields A, and B are
calculated as

{Ag(r) =V x (V X ugr) + kV X vgr, s

Bg(r) =V x (V x vgr) + kV X ugr.
The generated electric and magnetic fields Eg and H, are obtained using an inverse trans-

A B
. . A _ B ;o .
formation pair E, = T H, = T The current on 9D, either magnetic current M
or electric current J depending on the supporting surface is perfect magnetic conductor

(PMC) or perfect electric conductor (PEC), can be evaluated by M = E x norJ = n x H.

Remark 2.1: To ease the numerical computations of integral operations, our method
makes use of a fictitious source’ in Figure 1, i.e. a sphere D compactly embedded in
the actual source region D;. In general, the physical source D; can have arbitrary shape
as long as it has a Lipschitz boundary, which compactly includes the fictitious source D
and is well separated from the control regions. Meanwhile, our scheme uses slightly larger
mutually disjoint regions W, and W5 such that D; € W1, D, € W), Wi N W, = ¥ and
(W1 U W,) N Dy = @ because, as shown in [26], an accurate control in the sense of the L2-
norm on d W; and d W, implies smooth interior controls on Dy and D,, via regularity and
uniqueness results for the solution of the interior Helmholtz equation.

Remark 2.2: Although the expression in (10) employs the single-layer potential operator,
it was noted in [40] that the input density could also be written in terms of the double-
layer potential operator and hence, also in terms of linear combinations of the two, named
combined-layer potential. In general, if the single-layer potential is considered, the source
is modelled as an array of monopoles, while it is modelled as an array of dipoles in the form
of a double-layer potential.

2.3. Integral equation representation

The Debye potential representation is applied in the forward modelling in the previous
subsection. In what follows, we present another approach that uses the integral equation to
express the electric and magnetic fields in terms of the currents. Unlike the first approach,
this computation strategy suggests that the source D; can be arbitrarily shaped instead of
just a sphere. Given surface currents J and M, the induced electric and magnetic fields are

E(x) = / (67 % y) - T + G xy) - M(y)] dS,,
dD; (16)

H(x) = /a [0y 30 + Gy MOy sy

where x and y are the observation and source points, respectively. G GEM GHI and gHM
are dyadic Green’s functions that map the response of point source locating at y to the
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observation point x. The superscript ‘E’ means the electric field. The subscript indicates
the source type, i.e. T is the electric current. G¥ means the electric field induced by a
electric current source. In free space, the Green’s functions have the analytic form,

B 1 elkR
GY(x,y) = iop - [I + —zvv] P

k 47R’
ikR .
Wy ot LZkR & 5
Grey =12 "R > (17)
HM . i 1 vy esz
) = & - T T
G xy) =iw + 2 R

¢Mxy) = -7 (x,y),

where R = x — y and R = |R| denotes the distance between the observation point and
source point. R=[R R R] is the distance tensor. I is the unit dyadic tensor. k is the
wavenumber in free space. For simplicity, we can express the integrals in (16) in a compact
form,

Dw(y) = [Gw(x1), Gw(x2)] . (18)

The integral equation representation applies the method of moments (MoM) to reduce the
continuous integral of EM fields to discrete EM moments. This is realized by discretizing
the source surface dD; into finite triangle patches such that the surface currents can be
expressed as

n=

1N (19)
wm (y) =M(y) =) ViAu(y), yeaD,
n=1

where A, is divergence-conforming RWG basis function [41]. N is the total number of
basis functions used to discretize surface current on the source. IS = [If Ig e IIS\,]
and VS = [VIS VZS Vf]] are two vectors and each element is the coefficient of
discredited surface currents J and M.

Remark 2.3: In (7), the integral operators are only applied to the radial component of
vectors A and B. In other words, the Debye potential method only evaluates the radial
component of the EM fields, i.e. E, and H,. However, the integral equation method uses
the full-wave in the forward modelling, i.e. E,, Eg, Eg, H;, Hy, and Hy. When we use N
and M mesh points to discretize the control region and the source region, respectively,
the resulting moment matrix by the Debye potential method is K € CN*M. However, the
moment matrix attained by the integral equation method will be much larger if we consider
the identical mesh scheme, i.e. K € C®V*M When we determine the unknown x by solving
the system Kx = b, the integral equation method will lead to a more ill-posed system as K
is more ill-conditioned.
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2.4. Optimization scheme

In previous subsections, two approaches are presented to define the forward operator. Once
the surface currents are given, the forward operator can evaluate the EM fields in exterior
regions. We call this procedure forward modelling. In brief, the forward operators in (14)
and (18) can be written as Dw = f. w is the density function expressed as a linear combina-
tion (with unknown coefficients) of bases spanning the set of all L? functions on the surface
of the source, i.e. dD;. f is the induced fields or potentials by w. This paper proposes to cast
the active field manipulation problem as an electromagnetic inverse source problem. The
main goal in electromagnetic inverse source problem is to find an unknown cause from its
known effect [42], i.e. find w from f. Following the same strategy in [24-29], the continuous
integral operator D is converted into a matrix form by discretizing the control regions and
source region into discrete meshes. Then the forward operator D yields a linear system,

Aw,; =D, (20)

where wy is a vector containing the unknown coefficients in discrete forms of w in (11)
and (19), A represents the matrix of moments computed from the propagator D, and b
is the vector of f in the mesh of evaluation points distributed within the control regions.
Intuitively, wy can be evaluated by w; = A~'b. However, A is not a square matrix in most
cases due to the inconsistent dimensions of wy and b. Consequently, A is not invertible. The
alternative way is to find an approximate solution w’; that produces the field b’ close to b.
(Data misfit can determine the proximity). Therefore, we can formulate an optimization
problem to find the optimal solution of w in (20),

2

Wg = argmin | ) &l Awg = bll7 ) | - (21)
wgy€dD; /

j=1
where &; is the weighting factor balancing the importance of the residuals, j = 1, 2. Solving
the optimization problem (21) yields a classical least-squares inversion. The minimiza-
tion of the discrete least-squares cost functional can ultimately result in an ill-posed linear
system, i.e. there is no unique solution. Hence, the original problem must be regular-
ized. We can apply two regularization approaches, including, the truncated singular value
decomposition (TSVD) and the Tikhonov regularization with the Morozov discrepancy
principle [43,44]. The TSVD method is a modification of the SVD method. We know from
matrix algebra that any matrix A € C"*" can be written in the form,

A =UDVT (22)

where the superscript T denotes the matrix transpose. U € C"™*™ and V € C"*" are
orthogonal matrices satisfying UTU = UUT =1, and VTV = VVT =I. I is the identity
matrix. D € C"™*" is a diagonal matrix and the diagonal elements d; are the singular values
of A. The minimum norm solution of the equation Ax = b is given by VD*UTb, where
VDTUT is the pseudo-inverse of A. DT is a diagonal matrix and the diagonal elements
are dj_l. Numerical instability may occur when the rth diagonal element d, in D is much
smaller than dy, i.e. d, ! appearing in D7 is much larger than d; ~! The matrix D7 is then
badly conditioned. To tackle this problem, we need to ignore the small diagonal elements



670 (&) C.QIETAL

which are below a defined threshold. This is the truncated SVD (TSVD) method. Hence,
the TSVD solution is expressed as

Ws = VD, UTb, (23)

where t denotes the number of diagonal elements in the truncated matrix.

Another typical regularization method is Tikhonov regularization. It provides some
smoothing, and generalized Tikhonov regularization provides an opportunity to incor-
porate known properties of the solution into the solution method [43]. The Tikhonov
regularized solution of (20) is

2
Wy = argmin | ) &l Awg = blE ) + lIWallFapy | (24)
wy€dD; s

j=1

where o > 0 is the regularization parameter representing the penalty weight for the power
required by the solution. The optimal « is determined by the Morozov discrepancy prin-
ciple [43,44]. The unknown discrete coeflicients in w, are taken to be the Tikhonov
solution,

Wi = (@l + A*A)"1A*D, (25)

where A* is the complex conjugate transpose of A.

In summary, two approaches are demonstrated to perform the forward modelling, i.e.
the Debye potential method and the integral equation method. In addition, two regu-
larization methods, including TSVD and Tikhonov regularization, are used to solve the
inverse problem. These forward and inverse modelling approaches can be summarized as
pseudocodes in the appendices, i.e. Algorithms 1 and 2.

3. Numerical results of benchmark examples

In this section, we present several numerical examples to support the abovementioned the-
oretical framework. We start from a simple control configuration as shown in Figure 2(a)
with one near control region W;. Then, we extend our numerical study into a multiple-
region regime with two near field control regions W; and W, as sketched in Figure 2(b).
The source and control regions are in free space. As we mentioned in Remark 2.1, the actual
source D can be arbitrarily shaped as long as it is Lipschitz and compactly embeds the fic-
titious source D.. In the following simulations, we use a spherical fictitious source D}, and
its radius is 0.31 m centred at the origin. When we apply the Debye potential method, the
source is modelled by 200x 100 6¢-mesh. The EM fields are approximated using 70 har-
monic orders, i.e. L = 70 in (11), resulting in a total of 5041 unknown coefficients. While
the source is discretized by 2808 triangle patches resulting in 4212 unknowns when the
integral equation method. Subsections 3.1 and 3.2 discuss the performance of our strategy
in each of the configurations mentioned above.

Before discussing the numerical examples, we shall introduce some measures to assess
the control performance. In the following content, we use the relative or absolute L%-norm
error to evaluate the control accuracy of the proposed method. We use the relative error
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far field

— a —r
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Figure 2. Sketch of the problem geometry showing the near control region(s) W and/or W, and the
source region Ds. (a) One control region. (b) Two control regions.

when the prescribed field is non-zero, otherwise we use the absolute error. The L?>-norm
error, is defined as

IG = Plzgw, .
— = if [Pl2w; # 0,

lerrli2aw;) = Pl 2aw)) (26)

IG —Pli2owy  if IPlr2aw; =0,

for each j = 1,2. G = Awgq denotes the generated field, and P is prescribed field. G and P
can be either E or H. Such a L?-norm error is an overall quantitative measure of control
performance. Additionally, we define another measure to show the control accuracy in each
mesh point, i.e. the pointwise error,

|Gi — Pi| .
B =Bl iep o,

errj = | P (27)
|Gi — P;i| if P;=0,

where err; is the relative or absolute error in the i evaluation point.
Moreover, we define the radiated power and stored energy to determine the feasibility
of the source. We can calculate the radiated power and stored energy via

Prad = NRe [ / fi- (E x HY) dS] , (28)
S

Pyor = Jm [ / fi- (E x HY) dS] X (29)
S

where 1 is the unit vector normal to the source surface 9 D;, the power is defined by Poynt-

ing’s theorem [45]. JRe and Jm respectively denotes the real and imaginary operator. The

quality factor (Q) is a dimensionless parameter that describes the resonance behaviour of

a harmonic source. It is defined by the radiated power and stored energy, as
i 27+ Pstor

(30)
Prag
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3.1. One near control region

Firstly, we consider a simple geometry with only one control region, as shown in Figure
2(a). The prescribed field in W; is a plane wave and the electric field is defined by
E(r) = Eoe®*, where Eg = [0,1,0] and k = [—1, 0, 0]k. The wavenumber k is 1, equiv-
alently, f = 47.75 MHz. The magnetic field can be attained by H(r) = ﬁk x E(r). Note
that the defined electric field in Cartesian coordinates indicates the EM wave propagates
along —x direction and electric field is polarized in y direction. To ease the computation
of spherical harmonics, we shall transform the EM fields from Cartesian coordinates into
spherical coordinates via a rotation matrix [46] (see Appendix). The control region is an
annular sector, and it is defined in the spherical coordinates (with respect to the origin) by

W, = :(r,e,q)) .7 €[0.5,0.55],6 ¢ [33—”] e [3—”5—”]} (31)
4 4 4 4

where W) is discretized into 8000 collocation points on the surface. The E and H are
evaluated at the discrete mesh points.

Aswe discussed in Section 2, two approaches are used in the forward modelling, and two
regularization methods are applied to solve the inverse problem. Therefore, there are four
available combinations in total to address the inverse source problem, i.e. ‘Debye potential
with TSVD’, ‘Debye potential with Tikhonov’, ‘integral equation with TSVD’, and ‘inte-
gral equation with Tikhonov’. We shall test the performance of these possible methods. In
the following, we present EM field control simulation results in one region. We show the
results obtained by the ‘integral equation with TSVD’ method for an illustrative purpose.
The prescribed and generated fields in the control region W; are shown in Figure 3 for
electric field and Figure 4 for magnetic fields. The first row shows the three components
of prescribed fields in each figure. The second row is the generated field by the inverted
source. The third row is the relative pointwise error. Note that only the real part of the
fields is considered here since the imaginary part exhibits similar results. We notice that
the generated fields, either electric or magnetic, almost show the same pattern as the pre-
scribed fields. The L2-norm error of the electric field is of order 10~%, and it is 10~2 for the
magnetic field. The less accuracy of the magnetic field is due to the unbalanced vector b
in (20) that contains both E and H (H is about 377 times less than E.)

Furthermore, we also test the same control geometry using the other three methods. The
pointwise errors are shown in Figure 5 for electric fields and Figure 6 for magnetic fields.
Similarly, the three columns exhibit the three components of the electric or magnetic fields.
Each row corresponds to one method.If we compare the first row with the third row and
the second row with the fourth row, we can observe that the integral equation method
generally outperforms the Debye potential method for both regularization methods. The
lower accuracy of the Debye potential method is due to the imprecise calculation of the
curl operator (V x) in (15). The Debye potential method uses the potentials  and v inver-
sion to obtain the densities. Then we calculate the E and H fields from u and v in (15). To
avoid instabilities in the numerical calculation of the curl of the potentials, the addition
theorem and the orthogonality of spherical harmonics were used in [29] to come up with
a finite-sum approximation for u and v. This approximation was then used to calculate the
curl and curl-curls necessary to get the E and H fields. However, the tiny numerical arti-
facts from the finite-sum approximation of the potentials got propagated in the supposed
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Figure 3. Electric field (E) synthesis in an exterior control region using the ‘integral equation with TSVD'.
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exact calculation of the curls since equation (4.10) of [29] requires the derivatives of the
potentials. The loss of some orders of accuracy signals that more spherical harmonics and
a significantly denser mesh are needed to make the Debye potential method more accu-
rate. Regarding the selection of the regularization method, we shall compare the third row
with the fourth row. We notice that the L2-norm error of the TSVD method is about one
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Figure 5. Pointwise relative error of electric field (E) using four control strategies.
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Figure 6. Pointwise relative error of magnetic field (H) using four control strategies.

order less than that of the Tikhonov regularization. This can be explained by the selection
of an appropriate regularization parameter « in (24). Essentially, the Tikhonov regularized
solution is the same as the solution obtained by the SVD if the regularization parameter o
is sufficiently small (smaller than the smallest singular value) [43]. However, we truncate
the SVD to remove the effects of minimal singular values that help to reduce oscillations
in the solution [47]. In Tikhonov regularized solution, we notice the parameter « is about
107!, The minimal value may cause fast oscillations in the solution. The inverted current
on the source dD; is shown in Figure 7 to demonstrate this phenomenon. The current is
displayed in a 2D (¢, 8)-plane for a better perspective. Here, we only consider one current
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Figure 7. Inverted surface electric current (J) on the source 9D;. (a) ‘Debye potential with TSVD" method.
(b) ‘Debye potential with Tikhonov' method. (c) ‘Integral equation with TSVD" method. (d) ‘Integral
equation with Tikhonov’ method.

type, i.e. the electric current J. In Figure 7, the first row shows the current computed by
Debye potential method with two regularization methods. The second row displays the
results of the integral equation method. We observe that the TSVD regularized solution
is more stable. The ‘integral equation with TSVD’ method can produce the best solution
among the four approaches regarding the control accuracy.

Furthermore, we also compare the power budget as well as the quality factor (Q) to
determine the feasibility of the source. Table 1 lists the results of four approaches. It is
worth noting that the Debye potential method can produce a source with remarkably low
Q, indicating the source is almost non-oscillating. This unique feature is conducive to
implementing the actual source. Besides, the integral equation method’s radiated power
is much higher than the Debye potential method, especially the ‘integral equation with
TSVD’ method.
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Table 1. Comparison of the power budget and Q among four approaches.

Radiated Stored
Method power (dB) energy (dB) Q
Debye with TSVD 95.56 93.01 3.5
Debye with Tikhonov 100.80 96.63 2.4
Integral equation with TSVD 143.9 175.2 85x10°
Integral equation with Tikhonov 104.9 130.0 2.1x103

3.2. Two near control region

This subsection demonstrates the control strategy in a two-region regime. We show the
performance of our scheme in creating the same plane EM wave given in 3.1 in W; and
null field in W,. The definition of W is same as Subsection 3.1. W5 is also an annular
sector, and it is defined in spherical coordinate as

3w 5w T
W, = {(r,9,¢>) .7 €[0.5,06],6 € [—, —} € [——, —] } 405,00l (32)

8 8 8 8
Both W) and W, are discretized into 8000 collocation points. As the prescribed field in
W) is zero; we shall only show the generated field for simplicity. Note that the generated
field can also be regarded as the pointwise absolute error. The simulation results using the
‘integral equation with TSVD’ are shown in Figures 8-11. Compared with the one region
control in Subsection 3.1, the generated fields E in Figure 8 and H in Figure 9 are almost
the same, i.e. the same level of relative error. The L?-norm error is 10~* of electric field and
1072 of the magnetic field, which indicates a good control in Wi. Regarding the second
region W>, the maximum amplitude of the generated field is of order 10~*, as shown in
Figures 10 and 11. The L2?-norm errors are low with order 1073 in W,. In this simulation,
good controls are observed in both W; and W,. This suggests that our method can main-
tain a quiet region while producing a plane wave in the other region. This is known as the

‘contrast control’.

The surface current J is also displayed in a 2D (¢, 6)-plane, in Figure 12. We find the
distribution is similar to that in Figure 7(c). The magnitude of J is slightly larger, revealing
that more control efforts are required to maintain the null region while producing a plane
wave in the other region.

4. Sensitivity analysis in free space

The previous section presents the EM field manipulation simulation results in one and two
exterior regions. A plane wave is prescribed in the one-region control. The contrast con-
trol, i.e. one plane wave region and one null field region is implemented in the two-region
regime. The L?-norm error evaluates the control performance. The presented results back
up the analysis of [29] and show that our strategy works for each of the two configu-
rations depicted in Figure 2. This section presents the sensitivity study for both ‘integral
equation with TSVD’ and ‘Debye potential with TSVD” methods. Based on the observa-
tions in Subsection 3.1, the ‘integral equation with TSVD’ method allows more accurate
control. However, it requires high power and oscillates. The source obtained by the ‘Debye
potential with TSVD’ method is more feasible than the integral equation method, i.e. less
oscillating, but it sacrifices the control accuracy. In the following simulations, we aim to
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Figure 9. Magnetic field (H) synthesis in an Wj using the ‘integral equation with TSVD'.

study the sensitivity of our strategy concerning variations in several physically relevant
parameters, such as wavenumber k, the distance between the control region and the source,
the control region size and, the mutual distance between the control regions (in the case of
two control regions Figure 2(b)). The sensitivity study gives insight into the feasibility of
implementing the physical source.
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Figure 12. Inverted surface electric current (J) on the source aD;.

The geometry in the sensitivity analysis is depicted in Figure 13. To distinguish the orig-
inal region (dark), the regions with modified parameters are shown in a light colour. For
instance, Wi“z denotes the near control, which is shifted away from the source, in which
the superscript 2’ corresponds to the experiment number in Section 4.2.
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Figure 13. Sketch of the geometry in sensitivity analysis. W; and W5 are original near controls and they
are shown in dark colour. The light-coloured regions with W3, where n = 2, 3 and 4, are corresponding
to the experiments in Sections 4.2-4.4.

Remark4.1: Asnoted in Subsection 3.1, for the Debye potential approach to yield accurate
results, a very dense discretization of the control regions and more spherical harmonics are
required. In [29], the authors were able to get very accurate results for a smaller geometry,
a source that has radius 0.0105 m and control regions with thickness 0.04 m. They used 70
harmonic orders and 37800 collocation points on each control region. As this study aims
to look at the feasibility of the proposed schemes, the dimensions of the source and control
regions were chosen to represent practically relevant scenarios. Hence, the larger geometry:
a source of radius 0.31 m and control regions of thickness 0.05 m and 0.1 m. In this study,
we were constrained to limit the collocation points to N = 8000 on each control region as
the integral equation approach will require a system with 6N (or 12N for the case of two
control regions) equations, compared to the Debye potential approach which will result to
two independent systems with just N (or 2N) equations each. Proportionally choosing N to
match the Debye potential results in [29] is computationally expensive. We will see in the
results below that the Debye potential approach produced some results with low accuracy.
However, the mathematical analysis in [29] guarantees that such results will be improved
by using more collocation points and harmonic orders.

4.1. Varying the wavenumber k

We start by a simple geometry in Figure 2(a), where only one control region W is consid-
ered. The region size is defined in (31). The prescribed field in W is the plane wave E(r) =
§e~**_In this simulation, we let the wavenumber vary from 0.1 rad m~! to 50 rad m~!.
The corresponding frequency varies from 4.775 MHz to 2.387 GHz. Only the wavenum-
ber is changed in each simulation, and other parameters are fixed. The simulation results
are shown in Figure 14. From left to right, four subplots respectively show the L2-norm
error of the radial component of electric field (E,), radiated power by D, stored energy in
Dy, and quality factor for both ‘integral equation with TSVD’ and ‘Debye potential with
TSVD’ methods. For ‘integral equation with TSVD’ method, the L?-norm error increases
from 10~ to 107! as the wavenumber increases. However, the L2-norm error evaluat-
ing the ‘Debye potential with TSVD’ method is much worse, which exceeds 0.5 as long as
the wavenumber is larger than 5. The radiated power and stored energy for both methods
change similarly as the wavenumber increases, except for the opposite trend after 20 rad
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Figure 14. Results showing the control accuracy and the power budget varying with k. From left toright,
(1) L2-norm error of E,. (2) Radiated power by Ds. (3) Stored energy in D;. (4) Quality factor.

m~ L. This suggests that the source obtained by the ‘integral equation with TSVD’ method is
more energy-intensive at high frequencies. The ‘Debye potential with TSVD’ method can
work at higher frequencies. The quality factor obtained from the ‘integral equation with
TSVD’ method decrease along with the wavenumber increase, resulting in a less oscillat-
ing source. However, the ‘Debye potential with TSVD’ method produces the exact opposite
change, indicating the source is more oscillating than the integral equation method. But
the quality factor is in general much less than that produced by the ‘integral equation with
TSVD’ method.

4.2. Varying the distance between the near control region and the source

The following results show the effect of variations in the distance between the near control
region and the source. We still use the initial model in Figure 2(a). The near control W;
is shifted further away from the source (W;"2 in Figure 13(a)) while all other parameters
are fixed. Note that the prescribed plane wave in W is the same as that in Subsection 3.1.
We define the distance as the spacing between the inner boundary of the annular sector
and the boundary of the source. The investigated range of the distance is from 0.1 m to
0.7 m. The results are depicted in Figure 15. We notice that the control accuracy changes
reversely for the two methods. In the ‘integral equation with TSVD” method, the relative
error in the near region increases when the control region moves further away from the
source. In contrast, the relative error keeps on descending for the ‘Debye potential with
TSVD’ method. In the entire range of distance, the integral equation method maintains
the relative error within an order of 1072, Though the Debye potential method realizes a
high-accurate control at a more considerable distance, the relative error is still larger than
1072. The power budget (radiated power and stored energy) and quality factor given by
the Debye potential method shows a significant jump when the control region is pushed far
away until the distance exceeds a threshold, 0.3 m. After the threshold, the power budget
is comparable to the integral equation method. These changes suggest that the ‘integral
equation with TSVD’” method can manipulate the EM fields in an exterior region that is
well-separated from the source, even though more control effort is required to achieve
good accuracy in control regions further from the source. However, the ‘Debye potential
with TSVD’ method has the limitation to control the far region as the power budget and
the quality factor changes significantly.
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4.3. Varying the near control region size

In this subsection, we consider the behaviour of the control accuracy and the power budget
concerning incremental increase in the outer radius of the near control region W, (W} in
Figure 13(a)) with all the other parameters fixed. The increase of the outer radius is equiv-
alent to enlarging the size of the control region. We shall use the thickness of the control
region as the size indicator. The thickness is the difference between the outer radius and the
inner radius of the annular sector. Following the same procedure in the previous study, the
prescribed plane wave in W is the same as that in Subsection 3.1. In this simulation, the
inner radius of the control region is 0.5 m. The outer radius varies from 0.55m to 1 m, i.e.
the thickness varies from 0.05 m to 0.5 m. The maximum thickness of the control region is
close to the diameter of the source. The results are shown in Figure 16. We notice that both
the integral equation method and the Debye potential method change in the same way,
i.e. the control accuracy and power budget keep worsening as the control region becomes
large. This indicates it is difficult to control a large region, especially larger than the source.
The quality factor does not change significantly in the entire range of the thickness.

4.4. Varying the mutual distance between the near control regions

This sensitivity test considers two near control regions and varies the mutual distance. The
first control region W is prescribed as a plane wave, and the second region W is null. In
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Figure 17. Results showing the control accuracy and the power budget varying with the mutual dis-
tance between two control regions. From left to right, (1) L2-norm error of E,. (2) Radiated power by Ds.
(3) Stored energy in Ds. (4) Quality factor.

Figure 13(b), W is fixed and we rotate W, around D; to obtain a new secondary control
region W3*. The mutual angle ¢ determines the mutual distance between the two near
controls as shown in Figure 13(b). The control accuracy and power budget are calculated
as the angle ¢ varies from 0° to 360°. If ¢ = 0°, the second control region W) is situated
exactly behind the first control region, then it is rotated counterclockwise as ¢ increases,
and finally, it is back to the starting point when ¢ = 360°. In this study, the prescribed plane
wave in W; and null field in W, are the same as that in Subsection 3.2. The results are shown
in Figure 17. We notice the curves for both methods are symmetric due to the symmetry of
the relative position between the control region and the source. In the first subplot, the L2-
norm relative error of the integral equation method is less than 10~ when ¢ is in the range
of [90°,270°]. If ¢ is out of this range, i.e. the near controls are too close to each other, the
relative error, as well as the source power, becomes excessive. However, the Debye potential
method shows opposite variations with respect to the mutual angle, e.g. the relative error
is large in the range of [90°, 270°]. This is due to the relative distance being larger when the
angle increases, and then the distance is shorter when the angle exceeds 180°. This indicates
that the Debye potential method is limited to controlling the region far from the source.
This phenomenon is investigated in Subsection 4.2. On the other hand, the Debye potential
method gives a much worse L?-norm error (even larger than 1). However, the power budget
is much less than the integral equation method. This is observed in Subsection 3.1, i.e.
the Debye potential method gives a low-power and less-oscillating source but loses the
control accuracy. In this simulation, the control regions cannot be too close; otherwise,
the accurate control effects are degraded using the integral equation method. However, the
mutual distance between two control regions must be within a threshold when the Debye
potential method is considered.

5. Conclusions

This paper presents the sensitivity of the active manipulation of electromagnetic fields in
free space. We demonstrate the existence of a current source (modeled as surface electric
and/or magnetic current) such that it is capable of approximating a priori given field in
some near control regions. We build upon our previous works and illustrate two approaches
for forward modelling and two regularization methods for inversion. In other words, four
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combined approaches are demonstrated to solve the electromagnetic inverse source prob-
lem. We compare the performance of these four approaches using a baseline model where
only one control region is considered. The simulation results suggest that the ‘integral
equation with TSVD’ method can realize the best control accuracy but gives a high-power
and oscillating source. The ‘Debye potential with TSVD’ method can achieve low-power
source reconstruction whereas with the price paid for low control accuracy. Hence, we
apply the ‘Debye potential with TSVD’ method and the ‘integral equation with TSVD’
method to perform the sensitivity study. We explored the behaviour of physically rele-
vant parameters (power budget, control accuracy, and quality factor) concerning variations
in the frequency, outward shift, the near control’s outer radius, and the mutual distance
between near controls.

In our simulations, we consider two initial models as shown in Figure 2. The first one
contains one near control and the second one has two near control regions. In this paper,
the prescribed field is a plane wave with only one control region. The plane wave is pre-
scribed in one region in the two-region regime, and a null field is maintained in the other
region. This is as known as ‘EM contrast control’. The simulation results in both of two
control regimes show the L?>-norm error is within 1073, which indicates a good accuracy
level.

In addition, we performed the sensitivity study based on our initial model. In the geom-
etry shown in Figure 2(a), the operating frequency first varies while all other parameters
are fixed. The frequency is swept from 4.775 MHz to 2.387 GHz (k is from 0.1 to 50). We
observe the fast and significant increase of the L?-norm error and power budget for both
methods. The quality factor changes reversely for the two methods. These changes indi-
cate that the integral equation method is limited to manipulating the high-frequency EM
fields using a relatively large source (Its diameter is five times as large as the wavelength).
However, this limitation is not obvious for Debye potential method.

In the second simulation, the near control region is moved outward. We noticed that the
‘integral equation with TSVD’ method can manipulate the EM fields in an exterior region
that is well-separated from the source, even though more power is required to achieve good
accuracy in control regions further from the source. However, the ‘Debye potential with
TSVD’ method cannot control the far region as the power budget and the quality factor
increase fast, suggesting the source is power-intensive and oscillating when controlling the
EM fields in the outlying area.

Next, we vary the outer radius of the near control region to explore the effect of the
near region’s size on the control accuracy and power budget. The relative error and power
budget change in the same way for both approaches. The control accuracy worsens as
the control region enlarges. The quality factor does not change significantly. The simu-
lation results show that the active control scheme requires more effort to achieve accurate
EM field control on a bigger region. We also considered the geometry in Figure 2(b). We
rotate the second near control region around the source in the simulation. We arrive at the
opposite conclusion using the integral equation and Debye potential methods. The inte-
gral equation method can realize good control accuracy within 3 x 107> as long as the
two near control regions are separated by an angle ¢ € [90°,270°]. However, outside this
range, the control performance is gradually degrading. This means two regions have to
be well-separated. On the contrary, the Debye potential method is limited to controlling
the region that should not be far away from the source. When W is rotated by an angle,
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the control accuracy degrades. Nevertheless, the control accuracy of the Debye potential
method is generally worse than the integral equation method.
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Appendices
Appendix 1. Debye potential method

Algorithm 1: Debye Potential Method Based Inverse Source Problem

input : Prescribed fields, (E;, H;) in Dj, j = 1,2,
Accuracy threshold 5.
Aj = \/—iew Ej,Bj = «/ia),u H,,

Compute (u;, v;) using (7),

S

Using (11), (12), and (13) to express (ug, v) from the given densities (wy, wy), i.e., Kw = f,

4 Discretize Kw = f into Awy; = b,
5 if TSVD then

6 | A=UDVT,D" = pinv(D),

7 t < 1000, truncate the first 1000 singular values,
8 wy = VD, UTb,

o | =T gllAwa — b2,

10 while 72 > §% do

11 t < (t+ 100)

12 wy = VD UTb

13 o = [3 1 &l Awg — bJ].
14 end

15 Wg < Wy

16 else

17 o < 10712

18 :3 <« 1.05
19 wa = (@l + A*A)~'A*D
0 | 2= [Y2, & Awg — bl + aflwal2l

21 while 72 > §2 do
22 o <~ d
B

23 wyg = (eI + A*A)"1A*D
2 2 = (L0, §llAwa — b2 + o [[wall ],
25 end
26 Wy < Wy
27 end
28 Using (11), (12), and (13) to express (ug, v¢) from Wi,
29 Calculate (Aq, Bg) from (ug, vo) using (15),
30 E, = £ H, = ——,

¢ V —iew £ iwi
31 J=nxH M=E;, xn

output: Surface currents J and/or M € D;.
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Appendix 2. Integral equation method

Algorithm 2: Integral Equation Method Based Inverse Source Problem

O e N AR W N -

o S R O G
C % N DU A R R = O

20
21

22

23
24

25
26
27

input : Prescribed fields, (E;,H;) Dj,j = 1,2,

Accuracy threshold 8.
Compute G, GEM, G, GHM via (17),
Using (16) to express (E, H) from (J, M), i.e., Gw = f,
Discretize (J, M) into (wy, wm) using (19),
Discretize Gw = f into Aw,; = b,

if TSVD then

A = UDVT, D" = pinv(D),
t < 1000, truncate the first 1000 singular values,
wy = VD, UTb,
2 = [L0, &llAwa — 1],
while 72 > §2 do
t < (t+ 100)
wy = VD UTb
2 =[], &l Awa — b]1].
end
W4 < Wy

a < 10712
B < 1.05
wy = (eI + A*A)"1A*D
w2 = [ &l Awa — bII% + aflwall?],
while t2 > §2 do

ol

B

wg = (eI + A*A)"1A*D

2 = (X7 &l Awa — bl + aflwall?),
end
VAVd < Wy

(L M) <~ wd>

output: Surface currents J and/or M € D;.




	1. Introduction
	2. Theory
	2.1. Problem formulation
	2.2. Debye potential representation
	2.3. Integral equation representation
	2.4. Optimization scheme

	3. Numerical results of benchmark examples
	3.1. One near control region
	3.2. Two near control region

	4. Sensitivity analysis in free space
	4.1. Varying the wavenumber k
	4.2. Varying the distance between the near control region and the source
	4.3. Varying the near control region size
	4.4. Varying the mutual distance between the near control regions

	5. Conclusions
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


