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ABSTRACT
This paper presents a detailed sensitivity analysis of the activemanip-
ulation scheme for electromagnetic (EM) fields in free space. The
active EM fields control strategy is designed to construct surface cur-
rent sources (electric and/or magnetic) that can manipulate the EM
fields in prescribed exterior regions. The active EM field control is
formulated as an inverse source problem. We follow the numerical
strategies in our previous works, which employ the Debye potential
representation and integral equation representation in the forward
modelling.We consider two regularization approaches to the inverse
problem to approximate a current source, namely the truncated sin-
gular value decomposition (TSVD) and the Tikhonov regularization
with the Morozov discrepancy principle. Moreover, we discuss the
sensitivity of the active scheme (concerning power budget, con-
trol accuracy, and quality factor) as a function of the frequency, the
distance between the control region and the source, the mutual
distance between the control regions, and the size of the control
region. Thenumerical simulations demonstrate somechallenges and
limitations of the active EM field control scheme.
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1. Introduction

Active manipulation of electromagnetic (EM) fields is emerging in modern electromag-
netics. In recent years, the study of active field control techniques has attracted huge
attention and research efforts. The current literature has significantly addressed the idea
of the active control of the EM fields in broad applications. These applications include, but
are not limited to, scattering cancellation or reduction [1–8], metamaterial or metasur-
face design [9–14], field synthesis [15–22]. Active field control techniques are becoming
increasingly ubiquitous to enhance EM wave-based systems.

Regarding the scattering cancellation or reduction (also known as cloaking) applica-
tions, Chen et al. [1] demonstrated active scattering-cancellation cloaks in both 1-D and
3-D scenarios. The authors explored the potential of active scattering-cancellation cloaks to
realize broadband invisibility based on anomalous permittivity dispersion. Theoretically,
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the proposed active cloak scheme can overcome the Bode–Fano bandwidth limit and oper-
ate in a much broader bandwidth than passive scattering-cancellation cloaks. Onofrei [8]
investigated the active cloaking in the quasi-static regime,where the field ismodelled by the
Laplace operator. In this work, the author proposed a systematic integral equation method
to generate suitable quasi-static fields for cloaking, illusions and energy focussing (with
given accuracy) inmultiple regions of interest. In [2], the authors proposed an active cloak-
ing mechanism that makes use of the equivalence principle. In this approach, the cylinder
is replaced by an array of electric or magnetic current sources placed around the cylinder’s
periphery. Then the equivalent currents radiate in free space. Another circular array of cur-
rent sources is placed concentrically to the original cylindrical object. Excitations of these
external sources are taken such that the array and the object cancel its overall scattering for
an incoming wave. Similarly, Selvanayagam et al. [6] investigated the active EM cloak using
the equivalence principle. Additional electric andmagnetic currents are introduced to can-
cel out the scattered fields from the object. Electric and magnetic dipoles can respectively
replace the electric and magnetic currents. It has been proven that this approach can real-
ize both exterior and interior cloaking.Moreover, scattering reduction is widespread in the
radar system. The authors in [7] proposed a general real-time radar cross-section (RCS)
reduction scheme to reduce the transient scattered signal from an object. They used a
sensor on the object tomeasure the incident signal and applied amicrostrip antenna to pro-
duce the cancelling signal. The authors assume that the direction of an incident signal at the
receiver is known. The radiation from the defending antenna can be adjusted in real-time
to cancel the scattering from the object. Thus the total field at the distant receiver is negli-
gible so that the object becomes invisible to a radar working in a given known frequency
band. The active field control techniques are also prevalent inmetamaterial or metasurface
design. In [9], Brown et al. explored the possibility of metasurface design by making use
of the electromagnetic inverse source framework. The electric and magnetic surface sus-
ceptibility profiles are computed such that the transmitted field exhibits the desired field
specifications. The results show that the metasurface can focus the beam from plane wave,
change the direction and radiation pattern, etc. Huang et al. [13] reported a reconfigurable
metasurface for multifunctional control of EM waves. The proposed metasurface can gen-
erate beam-splitting performance to reduce backward scattering waves. Research into new
active field manipulation methods can play an important role in field synthesis applica-
tions. Classically, the problem of field synthesis seeks to construct the necessary currents
on a source such that the source can produce a given field pattern [23]. Lopéz et al. [20]
proposed a source reconstruction method (SRM) to establish the equivalent current dis-
tribution that radiates the same field as the actual current induced in the antenna under
test (AUT). The target application is antenna diagnostics. The knowledge of the equivalent
currents allows the determination of the antenna radiating elements and the prediction
of the AUT-radiated fields outside the equivalent currents domain. Ayestarán et al. [15]
introduced an array synthesis technique that can focus the near-field (NF) on one or more
spots and simultaneously satisfy the far-field (FF) specifications. This array synthesis tech-
nique can be applied to wireless power transfer. Wireless links between the antenna array
and devices are established more efficiently since power radiated at undesired positions or
directions can be suppressed.

The majority of the efforts in the literature mentioned above have been focussed on
developing new approaches for active EM field control. One of the standard control
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strategies is based on the equivalence principle. Another category makes use of the trans-
formation acoustics or transformation optics techniques. These works give insight into
the performance of the proposed approaches under certain situations, such as narrow
frequency bands, limited control geometry, and fixed size of the sources. However, the
performances of the control strategies are unrevealed when the problem parameters are
changed. In addition, the evaluation of the control performance in previous literature is
limited, i.e. only based on the control accuracy. Therefore, a detailed sensitivity study for
the problem of controlling three-dimensional EM fields in prescribed exterior regions in
free space is presented. To our best knowledge, this is the first work to investigate the sen-
sitivity of the active scheme concerning the problem parameters. Following the similar
procedure in our previous publications [24–29], the active manipulation of the EMfields is
formulated as an inverse source-type problem, which addresses the source reconstruction
from the knowledge of the field outside the source region [30–32]. We discuss the sensi-
tivity of the active scheme (concerning power budget, control accuracy, and quality factor)
as a function of the frequency, the distance between the control region and the source,
the mutual distance between the control regions, and the size of the control region. In our
previous work [33], we demonstrated a feasibility study of actively manipulating EM fields
in free space. The paper mainly used integral equation method in the forward modelling
and the truncated singular value decomposition (TSVD) method to solve matrix inver-
sion. Besides, the paper is limited to the one-region control. In this work, we introduce
two approaches for forward modelling and two approaches for inversion, respectively. We
also extend our framework intomultiple-region control, especially in contrast control. The
contrast EM fields will pose control challenges as the control regions cannot be placed very
close to each other.

The rest of this paper is organized as follows. In Section 2, we formally describe the
problem and provide relevant theoretical results obtained in [29]. We apply two meth-
ods in the forward modelling, including the Debye potential approach and the integral
equation method. Two approaches are used to solve the inverse problem, including the
truncated singular value decomposition (TSVD) and the Tikhonov regularization with the
Morozov discrepancy principle. Section 3 shows the numerical results of the benchmark
examples. Section 4 presents the EM field control sensitivity analysis in free space. Finally,
we conclude the paper with some remarks in Section 5.

2. Theory

2.1. Problem formulation

This section presents a general description of the activemanipulation scheme for EMfields.
The unified functional and numerical framework have already been discussed in [26–29].
Though someof thoseworks addressed the problemof controlling theHelmholtz fields, the
approach could be extended to solve the EM problems governed by Maxwell’s equations.
We shall briefly recall several essential theoretical results and describe some geometric
configurations of interest.

This paper explores the active EM fields manipulation scheme in free space. The prob-
lem geometry is sketched in Figure 1. Here we only consider a single source Ds, two
control regions D1 and D2 for illustrative purposes. Note that the theoretical analysis in
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Figure 1. Sketch of the problem geometry showing the control regionsD1, D2 and the source regionDs
in free space.

[26,28,29,34] indicates that an arbitrary number of source regions and exterior control
regions can be considered in the active control scheme. The control regionsD1 andD2 are
mutually disjoint smooth domains, i.e.D1 ∩ D2 = ∅.We alsomake the assumption that the
control regions are well-separated from the source region, i.e. (D1 ∪ D2) ∩ Ds = ∅. Con-
sidering the EM wave in a homogeneous isotropic source free medium in R3, the wave
propagation is governed by Maxwell’s equations,

∇ × E = iωμH; ∇ ×H = −iωεE. (1)

where ε and μ is the electric permittivity and magnetic permeability of the homogeneous
and isotropic medium, yielding ε0 and μ0 in free space. The time-harmonic factor e−iωt is
assumed but suppressed in the following demonstration.

The inverse source problem addresses the source reconstruction from the knowledge
of the field outside the source region. It is often desirable to find the necessary sources
that produce the given EM fields in the prescribed exterior regions. Mathematically, the
problem is to find the boundary input on the source, either surface electric current J ∈
C∞(∂Ds) or magnetic currentM ∈ C∞(∂Ds) such that the solutions (E,H) of

⎧⎪⎨
⎪⎩
∇ × E = iωμH, ∇ ×H = −iωεH in R3\ Ds,
E× n = M, (or n×H = J) on ∂Ds,
(E,H) satisfy the Silver-Muller radiation condition at infinity,

(2)
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satisfy the control constraints{
‖E− Ej‖C(Dj) ≤ δ for j = 1, 2,
‖H−Hj‖C(Dj) ≤ δ for j = 1, 2,

(3)

where δ is the desired control accuracy threshold. In (2), n denotes the unit exterior normal
vector to Ds. The Silver-Muller radiation condition in (2) at infinity is defined as{

E(x)× x̂+ 1
YH(x) = O(1/|x|2),

H(x)× x̂ − YE(x) = O(1/|x|2), (4)

as |x| → ∞ uniformly with respect to points x̂ in the unit sphere S. Y =
√

ε
μ
is the admit-

tance in non-conductive media. The radiation conditions can be simply rewritten for all
the equivalent forms of the Maxwell system and giving a smooth enough boundary data,
they guarantee the uniqueness of solutions for Maxwell exterior problems [35].

2.2. Debye potential representation

We present two approaches for the numerical computation of EM fields from the surface
currents in the following subsections. The first one is the Debye potential representation
that expresses the vector EM fields in terms of two scalar Debye potentials [36–38]. This
approach gives rise to a pair of scalar inverse source problems involving the Helmholtz
equation as discussed in [26–29]. Firstly, we rewrite Maxwell’s equations in (1) as

∇ × Ẽ = ikH̃, ∇ × H̃ = −ikẼ, (5)

by introducing the transformation pair Ẽ = √ε E, H̃ = √μ H. The k in (5) is the
wavenumber and k = ω

√
με. Then, we define two vector fields A and B, where A =√−iεω E,B = √iωμ H, equivalently satisfy

∇ × A = kB, ∇ × B = kA. (6)

Equation (6) is called the Wilcox form of the Maxwell’s equations [39]. It has been proved
in [39] that there exists unique uj, vj (with zero average over the unit ball) solutions of
Helmholtz equation in Dj for each j = 1, 2 given by the following weakly singular integral
operators, ⎧⎪⎪⎨

⎪⎪⎩
uj(rr̂) = − r

2π

∫
B1

[
log(sin

γ

2
)
]
r̂ · Aj(rr̂′) dS,

vj(rr̂) = − r
2π

∫
B1

[
log(sin

γ

2
)
]
r̂ · Bj(rr̂′) dS,

(7)

where Bx denotes the ball centred at the origin and the radius is x, i.e. B1 in (7) is the unit
ball. Aj =

√−iεω Ej,Bj =
√
iωμ Hj, r̂ denotes the unit vector along direction r, r = |r|,

γ = |r̂− r̂′| denotes the geodesic distance between r̂ and r̂′. uj(r) and vj(r) satisfy

Aj(r) = ∇ × (∇ × ujr)+ k∇ × vjr, Bj(r) = ∇ × (∇ × vjr)+ k∇ × ujr in Dj, (8)

for each j = 1, 2. The scalar functions uj and vj are the Debye potentials. Then the problem
yields the source reconstruction from the knowledge of theDebye potentials in the exterior
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regions. Problem (2) can be written as⎧⎪⎨
⎪⎩
∇2u+ k2u = 0, ∇2v+ k2v = 0 in R3 \ Ds,
u, v satisfy Sommerfeld radiation condition at infinity,
‖u− uj‖C2(Dj) ≤ δ, ‖v− vj‖C2(Dj) ≤ δ.

(9)

We can adapt the results in [26–29], where the smooth control results of the Helmholtz
equation are discussed. Following the similar procedure in our previous works, we intro-
duce the sub-domains D′s and Wj with D′s � Ds, Dj � Wj for j = 1, 2. The symbol �
denotes compact inclusion. We make use of the ‘fictitious source’ D′s and control region
Wj with smooth boundary to ease the computation. Then we define the integral operator
K : L2(∂Ds′)→L2(∂Wj) as

Kw(xj) =
∫

∂D′s
w(y)	(xj, y) dSy, (10)

where for each j = 1, 2, xj ∈ ∂Wj and y ∈ ∂D′s. 	(x, y) = 1
4π

eik|x−y|
|x−y| is the fundamental

solution for the Helmholtz equation. K is the forward propagator or mapping function,
which accounts for the response of a point source locating at y to the observation point x.
w(y) ∈ L2(∂D′s) is the unknown density function defined on the fictitious source. w could
be determined by discretizing the control regions into a discretemesh of collocation points
and w is then expressed as a linear combination (with unknown coefficients) of truncated
series, ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wu(y) =
L∑
l=0

l∑
p=−l

αplY
p
l (ŷ),

wv(y) =
L∑
l=0

l∑
p=−l

βplY
p
l (ŷ),

(11)

where wu and wv are the density function corresponding to the Debye potentials u and v,
respectively.Yp

l is the orthonormal family of spherical harmonics discussed in [40]. αpl and
βpl are unknown discrete coefficients. Then using the addition theorem and the orthogo-
nality of spherical harmonics, u and v can be approximated by the following truncated
series of spherical Hankel functions H(1)

l of the first kind and spherical Bessel functions Jl
of order l,

u(r, θ ,φ) ≈ ug(r, θ ,φ) = ikr20
L∑
l=0

l∑
p=−l

αpl Jl(kr0) H
(1)
l (kr) Yp

l (θ ,φ), (12)

v(r, θ ,φ) ≈ vg(r, θ ,φ) = ikr20
L∑
l=0

l∑
p=−l

βpl Jl(kr0) H
(1)
l (kr) Yp

l (θ ,φ), (13)

where ug and vg denote the generated potentials from the given densitywu andwv, respec-
tively. In these expressions, r0 is the radius of the fictitious spherical source. The unknown
scalars αpl and βpl can be independently computed using the method discussed in [25].
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More details will be conveyed in Subsection 2.4. Hence, we can define an overall propagator
operator as

Dw(y) = [Kw(x1),Kw(x2)] . (14)

As long as the unknown coefficients αpl and βpl are determined, the Debye potentials ug
and vg can be obtained by (12) and (13). Then the generated vector fields Ag and Bg are
calculated as {

Ag(r) = ∇ × (∇ × ugr)+ k∇ × vgr,
Bg(r) = ∇ × (∇ × vgr)+ k∇ × ugr.

(15)

The generated electric and magnetic fields Eg andHg are obtained using an inverse trans-
formation pair Eg = Ag√−iεω ,Hg = Bg√

iωμ
. The current on ∂D′s, either magnetic current M

or electric current J depending on the supporting surface is perfect magnetic conductor
(PMC) or perfect electric conductor (PEC), can be evaluated byM = E× n or J = n×H.

Remark 2.1: To ease the numerical computations of integral operations, our method
makes use of a ‘fictitious source’ in Figure 1, i.e. a sphere D′s compactly embedded in
the actual source region Ds. In general, the physical source Ds can have arbitrary shape
as long as it has a Lipschitz boundary, which compactly includes the fictitious source D′s
and is well separated from the control regions. Meanwhile, our scheme uses slightly larger
mutually disjoint regions W1 and W2 such that D1 � W1, D2 � W2, W1 ∩W2 = ∅ and
(W1 ∪W2) ∩ Ds = ∅ because, as shown in [26], an accurate control in the sense of the L2-
norm on ∂W1 and ∂W2 implies smooth interior controls on D1 and D2, via regularity and
uniqueness results for the solution of the interior Helmholtz equation.

Remark 2.2: Although the expression in (10) employs the single-layer potential operator,
it was noted in [40] that the input density could also be written in terms of the double-
layer potential operator and hence, also in terms of linear combinations of the two, named
combined-layer potential. In general, if the single-layer potential is considered, the source
is modelled as an array ofmonopoles, while it is modelled as an array of dipoles in the form
of a double-layer potential.

2.3. Integral equation representation

The Debye potential representation is applied in the forward modelling in the previous
subsection. In what follows, we present another approach that uses the integral equation to
express the electric and magnetic fields in terms of the currents. Unlike the first approach,
this computation strategy suggests that the source Ds can be arbitrarily shaped instead of
just a sphere. Given surface currents J andM, the induced electric and magnetic fields are⎧⎪⎪⎨

⎪⎪⎩
E(x) =

∫
∂Ds

[GEJ(x, y) · J(y)+ GEM(x, y) ·M(y)
]
dSy,

H(x) =
∫

∂Ds

[GHJ(x, y) · J(y)+ GHM(x, y) ·M(y)
]
dSy,

(16)

where x and y are the observation and source points, respectively. GEJ , GEM , GHJ and GHM

are dyadic Green’s functions that map the response of point source locating at y to the
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observation point x. The superscript ‘E’ means the electric field. The subscript indicates
the source type, i.e. ‘J’ is the electric current. GEJ means the electric field induced by a
electric current source. In free space, the Green’s functions have the analytic form,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GEJ(x, y) = iωμ ·
[
I+ 1

k2
∇∇

]
· e

ikR

4πR
,

GHJ(x, y) = − eikR

4πR
· 1− ikR

R2
· R× I,

GHM(x, y) = iωε ·
[
I+ 1

k2
∇∇

]
· e

ikR

4πR
,

GEM(x, y) = −GHJ(x, y),

(17)

where R = x− y and R = |R| denotes the distance between the observation point and
source point. R = [

R R R
]
is the distance tensor. I is the unit dyadic tensor. k is the

wavenumber in free space. For simplicity, we can express the integrals in (16) in a compact
form,

Dw(y) = [Gw(x1),Gw(x2)] . (18)

The integral equation representation applies the method of moments (MoM) to reduce the
continuous integral of EM fields to discrete EM moments. This is realized by discretizing
the source surface ∂Ds into finite triangle patches such that the surface currents can be
expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
wJ

(
y
) = J

(
y
) = N∑

n=1
ISn�n

(
y
)
, and

wM
(
y
) = M

(
y
) = N∑

n=1
VS
n�n

(
y
)
, y ∈ ∂Ds,

(19)

where �n is divergence-conforming RWG basis function [41]. N is the total number of
basis functions used to discretize surface current on the source. IS = [

IS1 IS2 · · · ISN
]

and VS = [
VS
1 VS

2 · · · VS
N
]
are two vectors and each element is the coefficient of

discredited surface currents J andM.

Remark 2.3: In (7), the integral operators are only applied to the radial component of
vectors A and B. In other words, the Debye potential method only evaluates the radial
component of the EM fields, i.e. Er and Hr. However, the integral equation method uses
the full-wave in the forward modelling, i.e. Er, Eθ , Eφ , Hr, Hθ , and Hφ . When we use N
and M mesh points to discretize the control region and the source region, respectively,
the resulting moment matrix by the Debye potential method is K ∈ CN×M . However, the
momentmatrix attained by the integral equationmethodwill bemuch larger if we consider
the identicalmesh scheme, i.e.K ∈ C6N×M .Whenwe determine the unknown x by solving
the systemKx = b, the integral equation method will lead to a more ill-posed system asK
is more ill-conditioned.
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2.4. Optimization scheme

In previous subsections, two approaches are presented to define the forward operator. Once
the surface currents are given, the forward operator can evaluate the EM fields in exterior
regions. We call this procedure forward modelling. In brief, the forward operators in (14)
and (18) can be written asDw = f .w is the density function expressed as a linear combina-
tion (with unknown coefficients) of bases spanning the set of all L2 functions on the surface
of the source, i.e. ∂Ds. f is the induced fields or potentials byw. This paper proposes to cast
the active field manipulation problem as an electromagnetic inverse source problem. The
main goal in electromagnetic inverse source problem is to find an unknown cause from its
known effect [42], i.e. findw from f. Following the same strategy in [24–29], the continuous
integral operatorD is converted into a matrix form by discretizing the control regions and
source region into discrete meshes. Then the forward operatorD yields a linear system,

Awd = b, (20)

where wd is a vector containing the unknown coefficients in discrete forms of w in (11)
and (19), A represents the matrix of moments computed from the propagator D, and b
is the vector of f in the mesh of evaluation points distributed within the control regions.
Intuitively, wd can be evaluated by wd = A−1b. However, A is not a square matrix in most
cases due to the inconsistent dimensions ofwd and b. Consequently,A is not invertible. The
alternative way is to find an approximate solution w′d that produces the field b′ close to b.
(Data misfit can determine the proximity). Therefore, we can formulate an optimization
problem to find the optimal solution of wd in (20),

ŵd = argmin
wd∈∂Ds

⎡
⎣ 2∑

j=1
ξj‖Awd − b‖2L2(∂Wj)

⎤
⎦ , (21)

where ξj is the weighting factor balancing the importance of the residuals, j = 1, 2. Solving
the optimization problem (21) yields a classical least-squares inversion. The minimiza-
tion of the discrete least-squares cost functional can ultimately result in an ill-posed linear
system, i.e. there is no unique solution. Hence, the original problem must be regular-
ized. We can apply two regularization approaches, including, the truncated singular value
decomposition (TSVD) and the Tikhonov regularization with the Morozov discrepancy
principle [43,44]. The TSVDmethod is a modification of the SVDmethod.We know from
matrix algebra that any matrix A ∈ Cm×n can be written in the form,

A = UDVᵀ (22)

where the superscript T denotes the matrix transpose. U ∈ Cm×m and V ∈ Cn×n are
orthogonal matrices satisfying UᵀU = UUᵀ = I, and VᵀV = VVᵀ = I. I is the identity
matrix.D ∈ Cm×n is a diagonal matrix and the diagonal elements dj are the singular values
of A. The minimum norm solution of the equation Ax = b is given by VD+Uᵀb, where
VD+Uᵀ is the pseudo-inverse of A. D+ is a diagonal matrix and the diagonal elements
are dj−1. Numerical instability may occur when the rth diagonal element dr in D is much
smaller than d1, i.e. dr−1 appearing inD+ is much larger than d1−1. ThematrixD+ is then
badly conditioned. To tackle this problem, we need to ignore the small diagonal elements
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which are below a defined threshold. This is the truncated SVD (TSVD) method. Hence,
the TSVD solution is expressed as

ŵd = VD+t U
ᵀb, (23)

where t denotes the number of diagonal elements in the truncated matrix.
Another typical regularization method is Tikhonov regularization. It provides some

smoothing, and generalized Tikhonov regularization provides an opportunity to incor-
porate known properties of the solution into the solution method [43]. The Tikhonov
regularized solution of (20) is

ŵd = argmin
wd∈∂Ds

⎡
⎣ 2∑

j=1
ξj‖Awd − b‖2L2(∂Wj)

+ α‖wd‖2L2(∂D′s)

⎤
⎦ , (24)

where α > 0 is the regularization parameter representing the penalty weight for the power
required by the solution. The optimal α is determined by the Morozov discrepancy prin-
ciple [43,44]. The unknown discrete coefficients in wd are taken to be the Tikhonov
solution,

ŵd = (αI+ A∗A)−1A∗b, (25)

where A∗ is the complex conjugate transpose of A.
In summary, two approaches are demonstrated to perform the forward modelling, i.e.

the Debye potential method and the integral equation method. In addition, two regu-
larization methods, including TSVD and Tikhonov regularization, are used to solve the
inverse problem. These forward and inverse modelling approaches can be summarized as
pseudocodes in the appendices, i.e. Algorithms 1 and 2.

3. Numerical results of benchmark examples

In this section, we present several numerical examples to support the abovementioned the-
oretical framework. We start from a simple control configuration as shown in Figure 2(a)
with one near control region W1. Then, we extend our numerical study into a multiple-
region regime with two near field control regions W1 and W2 as sketched in Figure 2(b).
The source and control regions are in free space. Aswementioned in Remark 2.1, the actual
sourceDs can be arbitrarily shaped as long as it is Lipschitz and compactly embeds the fic-
titious source D′s. In the following simulations, we use a spherical fictitious source D′s, and
its radius is 0.31m centred at the origin. When we apply the Debye potential method, the
source is modelled by 200×100 θφ-mesh. The EM fields are approximated using 70 har-
monic orders, i.e. L = 70 in (11), resulting in a total of 5041 unknown coefficients. While
the source is discretized by 2808 triangle patches resulting in 4212 unknowns when the
integral equationmethod. Subsections 3.1 and 3.2 discuss the performance of our strategy
in each of the configurations mentioned above.

Before discussing the numerical examples, we shall introduce some measures to assess
the control performance. In the following content, we use the relative or absolute L2-norm
error to evaluate the control accuracy of the proposed method. We use the relative error
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Figure 2. Sketch of the problem geometry showing the near control region(s) W1 and/or W2 and the
source region Ds. (a) One control region. (b) Two control regions.

when the prescribed field is non-zero, otherwise we use the absolute error. The L2-norm
error, is defined as

‖err‖L2(∂Wj) =

⎧⎪⎨
⎪⎩
‖G− P‖L2(∂Wj)

‖P‖L2(∂Wj)
if ‖P‖L2(∂Wj) �= 0,

‖G− P‖L2(∂Wj) if ‖P‖L2(∂Wj) = 0,
(26)

for each j = 1, 2. G = Awd denotes the generated field, and P is prescribed field. G and P
can be either E or H. Such a L2-norm error is an overall quantitative measure of control
performance. Additionally, we define anothermeasure to show the control accuracy in each
mesh point, i.e. the pointwise error,

erri =
⎧⎨
⎩
|Gi − Pi|
|Pi| if Pi �= 0,

|Gi − Pi| if Pi = 0,
(27)

where erri is the relative or absolute error in the ith evaluation point.
Moreover, we define the radiated power and stored energy to determine the feasibility

of the source. We can calculate the radiated power and stored energy via

Prad = Re

[∫
S
n̂ · (E×H∗) dS

]
, (28)

Pstor = Im

[∫
S
n̂ · (E×H∗) dS

]
, (29)

where n̂ is the unit vector normal to the source surface ∂Ds, the power is defined by Poynt-
ing’s theorem [45]. Re and Im respectively denotes the real and imaginary operator. The
quality factor (Q) is a dimensionless parameter that describes the resonance behaviour of
a harmonic source. It is defined by the radiated power and stored energy, as

Q = 2π · Pstor
Prad

. (30)
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3.1. One near control region

Firstly, we consider a simple geometry with only one control region, as shown in Figure
2(a). The prescribed field in W1 is a plane wave and the electric field is defined by
E(r) = E0eik·r, where E0 = [0, 1, 0] and k = [−1, 0, 0]k. The wavenumber k is 1, equiv-
alently, f = 47.75MHz. The magnetic field can be attained by H(r) = 1

ωμ
k × E(r). Note

that the defined electric field in Cartesian coordinates indicates the EM wave propagates
along −x̂ direction and electric field is polarized in ŷ direction. To ease the computation
of spherical harmonics, we shall transform the EM fields from Cartesian coordinates into
spherical coordinates via a rotation matrix [46] (see Appendix). The control region is an
annular sector, and it is defined in the spherical coordinates (with respect to the origin) by

W1 =
{
(r, θ ,φ) : r ∈ [0.5, 0.55], θ ∈

[
π

4
,
3π
4

]
,φ ∈

[
3π
4
,
5π
4

]}
, (31)

where W1 is discretized into 8000 collocation points on the surface. The E and H are
evaluated at the discrete mesh points.

Aswe discussed in Section 2, two approaches are used in the forwardmodelling, and two
regularization methods are applied to solve the inverse problem. Therefore, there are four
available combinations in total to address the inverse source problem, i.e. ‘Debye potential
with TSVD’, ‘Debye potential with Tikhonov’, ‘integral equation with TSVD’, and ‘inte-
gral equation with Tikhonov’. We shall test the performance of these possible methods. In
the following, we present EM field control simulation results in one region. We show the
results obtained by the ‘integral equation with TSVD’ method for an illustrative purpose.
The prescribed and generated fields in the control region W1 are shown in Figure 3 for
electric field and Figure 4 for magnetic fields. The first row shows the three components
of prescribed fields in each figure. The second row is the generated field by the inverted
source. The third row is the relative pointwise error. Note that only the real part of the
fields is considered here since the imaginary part exhibits similar results. We notice that
the generated fields, either electric or magnetic, almost show the same pattern as the pre-
scribed fields. The L2-norm error of the electric field is of order 10−4, and it is 10−2 for the
magnetic field. The less accuracy of the magnetic field is due to the unbalanced vector b
in (20) that contains both E andH (H is about 377 times less than E.)

Furthermore, we also test the same control geometry using the other threemethods. The
pointwise errors are shown in Figure 5 for electric fields and Figure 6 for magnetic fields.
Similarly, the three columns exhibit the three components of the electric ormagnetic fields.
Each row corresponds to one method.If we compare the first row with the third row and
the second row with the fourth row, we can observe that the integral equation method
generally outperforms the Debye potential method for both regularization methods. The
lower accuracy of the Debye potential method is due to the imprecise calculation of the
curl operator (∇×) in (15). The Debye potential method uses the potentials u and v inver-
sion to obtain the densities. Then we calculate the E andH fields from u and v in (15). To
avoid instabilities in the numerical calculation of the curl of the potentials, the addition
theorem and the orthogonality of spherical harmonics were used in [29] to come up with
a finite-sum approximation for u and v. This approximation was then used to calculate the
curl and curl-curls necessary to get the E and H fields. However, the tiny numerical arti-
facts from the finite-sum approximation of the potentials got propagated in the supposed
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Figure 3. Electric field (E) synthesis in an exterior control region using the ‘integral equationwith TSVD’.

Figure 4. Magnetic field (H) synthesis in an exterior control region using the ‘integral equation with
TSVD’.

exact calculation of the curls since equation (4.10) of [29] requires the derivatives of the
potentials. The loss of some orders of accuracy signals that more spherical harmonics and
a significantly denser mesh are needed to make the Debye potential method more accu-
rate. Regarding the selection of the regularization method, we shall compare the third row
with the fourth row. We notice that the L2-norm error of the TSVD method is about one
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Figure 5. Pointwise relative error of electric field (E) using four control strategies.

Figure 6. Pointwise relative error of magnetic field (H) using four control strategies.

order less than that of the Tikhonov regularization. This can be explained by the selection
of an appropriate regularization parameter α in (24). Essentially, the Tikhonov regularized
solution is the same as the solution obtained by the SVD if the regularization parameter α

is sufficiently small (smaller than the smallest singular value) [43]. However, we truncate
the SVD to remove the effects of minimal singular values that help to reduce oscillations
in the solution [47]. In Tikhonov regularized solution, we notice the parameter α is about
10−19. The minimal value may cause fast oscillations in the solution. The inverted current
on the source ∂Ds is shown in Figure 7 to demonstrate this phenomenon. The current is
displayed in a 2D (φ, θ)-plane for a better perspective. Here, we only consider one current
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Figure 7. Inverted surface electric current (J) on the source ∂Ds. (a) ‘Debyepotentialwith TSVD’method.
(b) ‘Debye potential with Tikhonov’ method. (c) ‘Integral equation with TSVD’ method. (d) ‘Integral
equation with Tikhonov’ method.

type, i.e. the electric current J. In Figure 7, the first row shows the current computed by
Debye potential method with two regularization methods. The second row displays the
results of the integral equation method. We observe that the TSVD regularized solution
is more stable. The ‘integral equation with TSVD’ method can produce the best solution
among the four approaches regarding the control accuracy.

Furthermore, we also compare the power budget as well as the quality factor (Q) to
determine the feasibility of the source. Table 1 lists the results of four approaches. It is
worth noting that the Debye potential method can produce a source with remarkably low
Q, indicating the source is almost non-oscillating. This unique feature is conducive to
implementing the actual source. Besides, the integral equation method’s radiated power
is much higher than the Debye potential method, especially the ‘integral equation with
TSVD’ method.
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Table 1. Comparison of the power budget and Q among four approaches.

Method
Radiated
power (dB)

Stored
energy (dB) Q

Debye with TSVD 95.56 93.01 3.5
Debye with Tikhonov 100.80 96.63 2.4
Integral equation with TSVD 143.9 175.2 8.5×103
Integral equation with Tikhonov 104.9 130.0 2.1×103

3.2. Two near control region

This subsection demonstrates the control strategy in a two-region regime. We show the
performance of our scheme in creating the same plane EM wave given in 3.1 in W1 and
null field in W2. The definition of W1 is same as Subsection 3.1. W2 is also an annular
sector, and it is defined in spherical coordinate as

W2 =
{
(r, θ ,φ) : r ∈ [0.5, 0.6], θ ∈

[
3π
8
,
5π
8

]
,φ ∈

[
−π

8
,
π

8

]}
+ [0.5, 0, 0]. (32)

Both W1 and W2 are discretized into 8000 collocation points. As the prescribed field in
W2 is zero; we shall only show the generated field for simplicity. Note that the generated
field can also be regarded as the pointwise absolute error. The simulation results using the
‘integral equation with TSVD’ are shown in Figures 8–11. Compared with the one region
control in Subsection 3.1, the generated fields E in Figure 8 and H in Figure 9 are almost
the same, i.e. the same level of relative error. The L2-norm error is 10−4 of electric field and
10−2 of the magnetic field, which indicates a good control in W1. Regarding the second
region W2, the maximum amplitude of the generated field is of order 10−4, as shown in
Figures 10 and 11. The L2-norm errors are low with order 10−3 inW2. In this simulation,
good controls are observed in bothW1 andW2. This suggests that our method can main-
tain a quiet region while producing a plane wave in the other region. This is known as the
‘contrast control’.

The surface current J is also displayed in a 2D (φ, θ)-plane, in Figure 12. We find the
distribution is similar to that in Figure 7(c). The magnitude of J is slightly larger, revealing
that more control efforts are required to maintain the null region while producing a plane
wave in the other region.

4. Sensitivity analysis in free space

The previous section presents the EM fieldmanipulation simulation results in one and two
exterior regions. A plane wave is prescribed in the one-region control. The contrast con-
trol, i.e. one plane wave region and one null field region is implemented in the two-region
regime. The L2-norm error evaluates the control performance. The presented results back
up the analysis of [29] and show that our strategy works for each of the two configu-
rations depicted in Figure 2. This section presents the sensitivity study for both ‘integral
equation with TSVD’ and ‘Debye potential with TSVD’ methods. Based on the observa-
tions in Subsection 3.1, the ‘integral equation with TSVD’ method allows more accurate
control. However, it requires high power and oscillates. The source obtained by the ‘Debye
potential with TSVD’ method is more feasible than the integral equation method, i.e. less
oscillating, but it sacrifices the control accuracy. In the following simulations, we aim to
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Figure 8. Electric field (E) synthesis in anW1 using the ‘integral equation with TSVD’.

Figure 9. Magnetic field (H) synthesis in anW1 using the ‘integral equation with TSVD’.

study the sensitivity of our strategy concerning variations in several physically relevant
parameters, such as wavenumber k, the distance between the control region and the source,
the control region size and, the mutual distance between the control regions (in the case of
two control regions Figure 2(b)). The sensitivity study gives insight into the feasibility of
implementing the physical source.
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Figure 10. Generated electric field (E) in anW2 using the ‘integral equation with TSVD’.

Figure 11. Generated magnetic field (H) in anW2 using the ‘integral equation with TSVD’.

Figure 12. Inverted surface electric current (J) on the source ∂Ds.

The geometry in the sensitivity analysis is depicted in Figure 13. To distinguish the orig-
inal region (dark), the regions with modified parameters are shown in a light colour. For
instance, W∗21 denotes the near control, which is shifted away from the source, in which
the superscript ‘2’ corresponds to the experiment number in Section 4.2.
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(a) (b)

Figure 13. Sketch of the geometry in sensitivity analysis.W1 andW2 are original near controls and they
are shown in dark colour. The light-coloured regions withW∗n1 , where n = 2, 3 and 4, are corresponding
to the experiments in Sections 4.2–4.4.

Remark 4.1: Asnoted in Subsection 3.1, for theDebye potential approach to yield accurate
results, a very dense discretization of the control regions andmore spherical harmonics are
required. In [29], the authors were able to get very accurate results for a smaller geometry,
a source that has radius 0.0105m and control regions with thickness 0.04m. They used 70
harmonic orders and 37800 collocation points on each control region. As this study aims
to look at the feasibility of the proposed schemes, the dimensions of the source and control
regionswere chosen to represent practically relevant scenarios.Hence, the larger geometry:
a source of radius 0.31m and control regions of thickness 0.05m and 0.1m. In this study,
we were constrained to limit the collocation points to N = 8000 on each control region as
the integral equation approach will require a system with 6N (or 12N for the case of two
control regions) equations, compared to the Debye potential approach which will result to
two independent systemswith justN (or 2N) equations each. Proportionally choosingN to
match the Debye potential results in [29] is computationally expensive. We will see in the
results below that the Debye potential approach produced some results with low accuracy.
However, the mathematical analysis in [29] guarantees that such results will be improved
by using more collocation points and harmonic orders.

4.1. Varying thewavenumber k

We start by a simple geometry in Figure 2(a), where only one control regionW1 is consid-
ered. The region size is defined in (31). The prescribed field inW1 is the plane wave E(r) =
ŷe−ikx. In this simulation, we let the wavenumber vary from 0.1 rad m−1 to 50 rad m−1.
The corresponding frequency varies from 4.775MHz to 2.387GHz. Only the wavenum-
ber is changed in each simulation, and other parameters are fixed. The simulation results
are shown in Figure 14. From left to right, four subplots respectively show the L2-norm
error of the radial component of electric field (Er), radiated power by Ds, stored energy in
Ds, and quality factor for both ‘integral equation with TSVD’ and ‘Debye potential with
TSVD’ methods. For ‘integral equation with TSVD’ method, the L2-norm error increases
from 10−4 to 10−1 as the wavenumber increases. However, the L2-norm error evaluat-
ing the ‘Debye potential with TSVD’ method is much worse, which exceeds 0.5 as long as
the wavenumber is larger than 5. The radiated power and stored energy for both methods
change similarly as the wavenumber increases, except for the opposite trend after 20 rad
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Figure 14. Results showing the control accuracy and thepowerbudget varyingwith k. From left to right,
(1) L2-norm error of Er . (2) Radiated power by Ds. (3) Stored energy in Ds. (4) Quality factor.

m−1. This suggests that the source obtained by the ‘integral equationwithTSVD’method is
more energy-intensive at high frequencies. The ‘Debye potential with TSVD’ method can
work at higher frequencies. The quality factor obtained from the ‘integral equation with
TSVD’ method decrease along with the wavenumber increase, resulting in a less oscillat-
ing source. However, the ‘Debye potential with TSVD’method produces the exact opposite
change, indicating the source is more oscillating than the integral equation method. But
the quality factor is in general much less than that produced by the ‘integral equation with
TSVD’ method.

4.2. Varying the distance between the near control region and the source

The following results show the effect of variations in the distance between the near control
region and the source. We still use the initial model in Figure 2(a). The near control W1
is shifted further away from the source (W∗21 in Figure 13(a)) while all other parameters
are fixed. Note that the prescribed plane wave inW1 is the same as that in Subsection 3.1.
We define the distance as the spacing between the inner boundary of the annular sector
and the boundary of the source. The investigated range of the distance is from 0.1m to
0.7m. The results are depicted in Figure 15. We notice that the control accuracy changes
reversely for the two methods. In the ‘integral equation with TSVD’ method, the relative
error in the near region increases when the control region moves further away from the
source. In contrast, the relative error keeps on descending for the ‘Debye potential with
TSVD’ method. In the entire range of distance, the integral equation method maintains
the relative error within an order of 10−3. Though the Debye potential method realizes a
high-accurate control at a more considerable distance, the relative error is still larger than
10−2. The power budget (radiated power and stored energy) and quality factor given by
theDebye potential method shows a significant jumpwhen the control region is pushed far
away until the distance exceeds a threshold, 0.3m. After the threshold, the power budget
is comparable to the integral equation method. These changes suggest that the ‘integral
equation with TSVD’ method can manipulate the EM fields in an exterior region that is
well-separated from the source, even though more control effort is required to achieve
good accuracy in control regions further from the source. However, the ‘Debye potential
with TSVD’ method has the limitation to control the far region as the power budget and
the quality factor changes significantly.
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Figure 15. Results showing the control accuracy and the power budget varying with mutual distance
between the control region and the source. From left to right, (1) L2-norm error of Er . (2) Radiated power
by Ds. (3) Stored energy in Ds. (4) Quality factor.

Figure 16. Results showing the control accuracy and the power budget varying with the size of the
control region. From left to right, (1) L2-norm error of Er . (2) Radiated power by Ds. (3) Stored energy in
Ds. (4) Quality factor.

4.3. Varying the near control region size

In this subsection, we consider the behaviour of the control accuracy and the power budget
concerning incremental increase in the outer radius of the near control regionW1 (W∗31 in
Figure 13(a)) with all the other parameters fixed. The increase of the outer radius is equiv-
alent to enlarging the size of the control region. We shall use the thickness of the control
region as the size indicator. The thickness is the difference between the outer radius and the
inner radius of the annular sector. Following the same procedure in the previous study, the
prescribed plane wave in W1 is the same as that in Subsection 3.1. In this simulation, the
inner radius of the control region is 0.5m. The outer radius varies from 0.55m to 1m, i.e.
the thickness varies from 0.05m to 0.5m. The maximum thickness of the control region is
close to the diameter of the source. The results are shown in Figure 16.We notice that both
the integral equation method and the Debye potential method change in the same way,
i.e. the control accuracy and power budget keep worsening as the control region becomes
large. This indicates it is difficult to control a large region, especially larger than the source.
The quality factor does not change significantly in the entire range of the thickness.

4.4. Varying themutual distance between the near control regions

This sensitivity test considers two near control regions and varies the mutual distance. The
first control regionW1 is prescribed as a plane wave, and the second regionW2 is null. In
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Figure 17. Results showing the control accuracy and the power budget varying with the mutual dis-
tance between two control regions. From left to right, (1) L2-norm error of Er . (2) Radiated power by Ds.
(3) Stored energy in Ds. (4) Quality factor.

Figure 13(b), W1 is fixed and we rotate W2 around Ds to obtain a new secondary control
region W∗42 . The mutual angle φ determines the mutual distance between the two near
controls as shown in Figure 13(b). The control accuracy and power budget are calculated
as the angle φ varies from 0◦ to 360◦. If φ = 0◦, the second control region W2 is situated
exactly behind the first control region, then it is rotated counterclockwise as φ increases,
and finally, it is back to the starting pointwhenφ = 360◦. In this study, the prescribed plane
wave inW1 andnull field inW2 are the same as that in Subsection 3.2. The results are shown
in Figure 17.We notice the curves for bothmethods are symmetric due to the symmetry of
the relative position between the control region and the source. In the first subplot, the L2-
norm relative error of the integral equationmethod is less than 10−3 when φ is in the range
of [90◦, 270◦]. If φ is out of this range, i.e. the near controls are too close to each other, the
relative error, as well as the source power, becomes excessive. However, the Debye potential
method shows opposite variations with respect to the mutual angle, e.g. the relative error
is large in the range of [90◦, 270◦]. This is due to the relative distance being larger when the
angle increases, and then the distance is shorterwhen the angle exceeds 180◦. This indicates
that the Debye potential method is limited to controlling the region far from the source.
This phenomenon is investigated in Subsection 4.2. On the other hand, theDebye potential
method gives amuchworseL2-normerror (even larger than 1).However, the power budget
is much less than the integral equation method. This is observed in Subsection 3.1, i.e.
the Debye potential method gives a low-power and less-oscillating source but loses the
control accuracy. In this simulation, the control regions cannot be too close; otherwise,
the accurate control effects are degraded using the integral equationmethod. However, the
mutual distance between two control regions must be within a threshold when the Debye
potential method is considered.

5. Conclusions

This paper presents the sensitivity of the active manipulation of electromagnetic fields in
free space. We demonstrate the existence of a current source (modeled as surface electric
and/or magnetic current) such that it is capable of approximating a priori given field in
somenear control regions.Webuild uponour previousworks and illustrate two approaches
for forward modelling and two regularization methods for inversion. In other words, four
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combined approaches are demonstrated to solve the electromagnetic inverse source prob-
lem. We compare the performance of these four approaches using a baseline model where
only one control region is considered. The simulation results suggest that the ‘integral
equation with TSVD’ method can realize the best control accuracy but gives a high-power
and oscillating source. The ‘Debye potential with TSVD’ method can achieve low-power
source reconstruction whereas with the price paid for low control accuracy. Hence, we
apply the ‘Debye potential with TSVD’ method and the ‘integral equation with TSVD’
method to perform the sensitivity study. We explored the behaviour of physically rele-
vant parameters (power budget, control accuracy, and quality factor) concerning variations
in the frequency, outward shift, the near control’s outer radius, and the mutual distance
between near controls.

In our simulations, we consider two initial models as shown in Figure 2. The first one
contains one near control and the second one has two near control regions. In this paper,
the prescribed field is a plane wave with only one control region. The plane wave is pre-
scribed in one region in the two-region regime, and a null field is maintained in the other
region. This is as known as ‘EM contrast control’. The simulation results in both of two
control regimes show the L2-norm error is within 10−3, which indicates a good accuracy
level.

In addition, we performed the sensitivity study based on our initial model. In the geom-
etry shown in Figure 2(a), the operating frequency first varies while all other parameters
are fixed. The frequency is swept from 4.775MHz to 2.387GHz (k is from 0.1 to 50). We
observe the fast and significant increase of the L2-norm error and power budget for both
methods. The quality factor changes reversely for the two methods. These changes indi-
cate that the integral equation method is limited to manipulating the high-frequency EM
fields using a relatively large source (Its diameter is five times as large as the wavelength).
However, this limitation is not obvious for Debye potential method.

In the second simulation, the near control region is moved outward.We noticed that the
‘integral equation with TSVD’ method can manipulate the EM fields in an exterior region
that is well-separated from the source, even thoughmore power is required to achieve good
accuracy in control regions further from the source. However, the ‘Debye potential with
TSVD’ method cannot control the far region as the power budget and the quality factor
increase fast, suggesting the source is power-intensive and oscillating when controlling the
EM fields in the outlying area.

Next, we vary the outer radius of the near control region to explore the effect of the
near region’s size on the control accuracy and power budget. The relative error and power
budget change in the same way for both approaches. The control accuracy worsens as
the control region enlarges. The quality factor does not change significantly. The simu-
lation results show that the active control scheme requires more effort to achieve accurate
EM field control on a bigger region. We also considered the geometry in Figure 2(b). We
rotate the second near control region around the source in the simulation. We arrive at the
opposite conclusion using the integral equation and Debye potential methods. The inte-
gral equation method can realize good control accuracy within 3× 10−3 as long as the
two near control regions are separated by an angle φ ∈ [90◦, 270◦]. However, outside this
range, the control performance is gradually degrading. This means two regions have to
be well-separated. On the contrary, the Debye potential method is limited to controlling
the region that should not be far away from the source. When W1 is rotated by an angle,
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the control accuracy degrades. Nevertheless, the control accuracy of the Debye potential
method is generally worse than the integral equation method.
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Appendices

Appendix 1. Debye potential method

Algorithm 1: Debye Potential Method Based Inverse Source Problem
input : Prescribed fields, (Ej,Hj) in Dj, j = 1, 2,

Accuracy threshold δ.
1 Aj =

√−iεω Ej,Bj =
√
iωμ Hj,

2 Compute (uj, vj) using (7),
3

Using (11), (12), and (13) to express (ug , vg) from the given densities (wu,wv), i.e.,Kw = f ,

4 DiscretizeKw = f into Awd = b,
5 if TSVD then
6 A = UDVᵀ,D+ = pinv(D),
7 t← 1000, truncate the first 1000 singular values,
8 wd = VD+t Uᵀb,
9 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2],

10 while τ 2 > δ2 do
11 t← (t + 100)
12 wd = VD+t Uᵀb
13 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2].

14 end
15 ŵd ← wd
16 else
17 α← 10−12
18 β ← 1.05
19 wd = (αI+ A∗A)−1A∗b
20 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2 + α‖wd‖2],

21 while τ 2 > δ2 do
22 α← α

β

23 wd = (αI+ A∗A)−1A∗b
24 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2 + α‖wd‖2],

25 end
26 ŵd ← wd
27 end
28 Using (11), (12), and (13) to express (ug , vg) from ŵd,
29 Calculate (Ag ,Bg) from (ug , vg) using (15),

30 Eg =
Ag√−iεω ,Hg =

Bg√
iωμ

,

31 J = n×Hg ,M = Eg × n.
output: Surface currents J and/orM ∈ Ds.
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Appendix 2. Integral equationmethod

Algorithm 2: Integral Equation Method Based Inverse Source Problem
input : Prescribed fields, (Ej,Hj) Dj, j = 1, 2,

Accuracy threshold δ.
1 Compute GEJ , GEM , GHJ , GHM via (17),

2 Using (16) to express (E,H) from (J,M), i.e., Gw = f ,
3 Discretize (J,M) into (wJ,wM) using (19),
4 Discretize Gw = f into Awd = b,
5 if TSVD then
6 A = UDVᵀ,D+ = pinv(D),
7 t← 1000, truncate the first 1000 singular values,
8 wd = VD+t Uᵀb,
9 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2],

10 while τ 2 > δ2 do
11 t← (t + 100)
12 wd = VD+t Uᵀb
13 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2].

14 end
15 ŵd ← wd
16 else
17 α← 10−12
18 β ← 1.05
19 wd = (αI+ A∗A)−1A∗b
20 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2 + α‖wd‖2],

21 while τ 2 > δ2 do
22 α← α

β

23 wd = (αI+ A∗A)−1A∗b
24 τ 2 = [

∑2
j=1 ξj‖Awd − b‖2 + α‖wd‖2],

25 end
26 ŵd ← wd
27 end
28 (J,M)← ŵd,

output: Surface currents J and/orM ∈ Ds.
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